A system for incorporating higher order functions in
Equational Programs

Srinivas Padmanabhuni,

Department of Computing Science,
University Of Alberta, Canada T6G 2H1.
e-mail: srinivas@cs.ualberta.ca

Abstract

Higher order functions, with the ability to manipulate functions as first-class ob-
jects, increase the expressive power of a programming language. Equational programs
provide a convenient paradigm to utilize the rewriting technique of functional languages
in combination with the unification technique of logic programming. Hence the equa-
tional programming paradigm can be enhanced considerably by incorporating higher
order functions.

In this paper we present a model with enhanced equation-solving capabilities, for
incorporating higher order functions in an equational programming framework. We
are able to achieve higher order features by extending first order procedures. We show
that this model preserves the properties of an equational program in going from first
order to higher order. We also show how this extension captures the dual notions of
higher order rewriting in the functional sense and higher order logic programming in
the sense of higher order equation solving capabilities.

Keywords: Equational Programming, Term Rewriting System, Automated Rea-
soning.

1 Motivation & Introduction

Equational programming [Gougen 86][O’Donnell 85] refers to the use of equations as a pro-
gramming language. This paradigm involves a combination of functional programming and
logic programming features. In functional programming, equations are used by repeatedly
substituting equal terms in a given formula till the normal (simplest) form is obtained. In
logic programming, we write a program as a set of implications between formulas in logic.
Goals are executed by a theorem prover that derives the consequences of the given statements
until the desired output is obtained by unification.

Equational programming combines both the aforementioned schemes into a single paradig-
m. Conventionally,for computation, equational programs are converted to term rewriting
systems, which are sets of oriented equations. Knuth and Bendix[Knuth 70] characterized

certain properties of a term rewriting system to be able to exactly represent a equational
program.

In this paper we present a model with enhanced equation-solving capabilities, for incorpo-
rating higher order functions in an equational programming framework. It has been observed
that incorporation of higher order features in equational programming framework requires
combining of A-calculus [Barendregt 84| and a first order equational program[Dougherty 91]
[Tannen et al 89]. We borrow the notion of currying from A-calculus and propose a system
, which is essentially a first order system with notion of currying embedded in it.

Our work can be seen as a first step towards the implementation of a fully higher order
equational programming system.

A preliminary version of this paper appears in [Srinivas 94].

2 Rewrite systems for equational programs

2.1 Terminology

Let T(F,X) be the set of first order terms, where F' is the set of function symbols and X is
the set of variables. With every f € F we associate a unique number of arguments (arity).
Any variable is a first order term and if f is an n-ary function symbol € F, and t¢4,...,t, are
first order terms, then f(t1,%s,...,1,)is a first order term. The subterm of s at position p is
denoted as s |,.

A substitution is a mapping from the set of variables to the set of terms which is equal to
identity almost everywhere. The composition of two substitutions ¢ and 6,denoted by o o #
or simply o6, is a composition of the two functions. Thus if xo = s for some x € X then
xof = sf. We say that a substitution o is at least as general as a substitution p and write
o < p if there is substitution 7 such that o7 = p. A term s matches a term ¢ if t=so for
some substitution o. We also say that ¢ is an instance of s in this case. A term s unifies
with a term t if so = to for some substitution o. A substitution o is called the most general
unifier (mgu) of two terms s and ¢ if for any unifier # of s and t, there exists a substitution
7 such that § =7 o0o0.

In this paper, a higher order function refers to any function which takes functions as
input and yields functions as output.

2.2 Equations and rewrite systems

An equational theory is a set of equations. An equation is an unordered pair of first order
terms written as s = t. Given a set of equations E we define a replacement step (<g)
between two terms s and t, denoted s <> ¢ ,if 1=r € E, s |,= lo and t=s[lo < ro],(i.e t=s
with the subterm at p replaced by ro), for some substitution o. Thus for E we say s = ¢ iff
s <37 t,where <>}, is the reflexive-transitive closure of <.

The following two problems are fundamental in equational theories:

a). Validity Problem: Given E, and an equation s =t , is s <>, ¢ 7

b).Satisfiability Problem: Given E, an equation s = t, find a substitution o such that so
5 to.

A rewrite rule over a set of terms T, is an ordered pair (L,r) of terms written 1 — .
A set of rewrite rules is called a term rewriting system,denoted by R. Here replacement is
allowed only from left to right. A term s rewrites to another term ¢ in one step, denoted s
— t, if for some rule [— 7 in R, position p in s and substitution ¢ such that loc = s |, and
t = s[lo < ro],. The reflexive-transitive closure of — is denoted by —*,and in such a case ¢
is said to be derivable from s. We write s | t if s and ¢ join,i.e. s =™ w and t —* w for some
term w. A term s is said to be irreducible or in normal form if there is no term ¢ such that
s — t.

A rewrite relation (—) is terminating if there exists no infinite chain of rewrites of the
form t; — ... — ;... A rewrite relation is (ground) confluent if whenever two (ground)
terms s and t are derivable from a term u, then there exists a term v derivable from both
s and ¢t A rewrite system which is both terminating and (ground) confluent is said to be
(ground) convergent.

A rewrite system R is sound with respect to a set of equations E , if the derivability
relation —* of R is a subset of the replacement relation <}, of E. A system R is complete
for E,if for any two terms that are provably equal in E are joinable in R.

The validity problem in an equational theory E is equivalent to the checking of the
equality of normal forms of the two terms,in the corresponding convergent rewrite system
R provided R is finite, sound and complete for E.This is possible because in a convergent
rewrite system T every term ¢ has exactly one normal form. This means that the terms s
and ¢ are joinable by a convergent system R iff they have the same normal form. Knuth
and Bendix [Knuth 70] provided a convenient procedure for obtaining a convergent rewrite
system from an equational theory based on the idea of critical pairs.

Let [— r and ¢ — d be two rules (or two versions of the same rule, with variables
renamed),in R. The equation s=t is said to be a critical pair between these two rules, if g
unifies with a non-variable subterm of 1 at position 7 using a substitution ¢ and s = ro
and t = l[d],0. We say that lo is a critical overlap, and we have ro < lo — [[d],o. That
is s and ¢ are the two terms obtained by rewriting the overlap between the two rules. For
example, 0 + (u + v) = u + v is a (joinable) critical pair between the rules 0 + 2 — z and
(y+u)+v — y+ (u+v). The overlap between these rules is (0 + u) 4+ v ; it is obtained
by unifying a left hand side 0 + x with a non-variable subterm y + u of the other left hand
side. A critical pair s = t in R is said to be joinable, if s | ¢t in R. Critical pairs are useful
for checking if a terminating system is confluent and hence convergent.

Lemma 2.1 (Critical Pair Lemma) [Knuth 70] A terminating rewrite system is conver-
gent iff all its critical pairs are joinable.

The Critical Pair Lemma gives a good method of generating a convergent rewrite system
equivalent to a set of equations. This method is called Completion. The method proceeds

by orienting equations into terminating rules, using a well-founded ordering, and generating
new equations by superposing left-hand sides until all critical pairs are joinable.

3 A new model for higher order functions in equational
programs

We present here a simple model using only first order equational programs, which captures
higher order functions in the functional sense and allows us to solve for functions. The idea
is called currying in A-calculus.

3.1 Term structure

In this model , a term belonging to T(F,X) is defined by the following inductive rules:
[1]. Any constant C, first order or higher order is a term.
[2]. Any variable Z, first order or higher order is a term.
[3]. An application app(;,t2), where ¢; and ¢, are terms, is a term.

This is the same as the original definition of first order term except that only one binary
function symbol (app) is used here. A rewrite system is a collection of oriented equations of
terms in this model.

Our set of terms forms a superset of the set of first order terms and includes higher order
terms. The fundamental process involved in the translation of a first order system to this
system is called currying (It is frequently quoted in functional programming literature).
The translation is carried out by representing any n-ary function in terms of the only func-
tion symbol in this system, i.e. app. Any first order term f(¢;....t,) is represented as

app(app(....app(f,t1), t2)..., ;) in the model .
This is illustrated with some examples below:
Example 1: Definition Of Apply n(Applying a function n times f"(z)).
Rule 1: app(app(app(apply_n,0),f),x) — x
It represents: apply n(0,f,x) — x
Rule 2: app(app(app(apply-n,app(s,n)),f),x) —
app(f,app(app(app(apply-n,n),f) x)).
It represents: apply n(s(n),f,x) — f(apply n(n,fx))
Example 2 : Definition Of MapCar:
Rule 1: app(app(mapcar,f),nil) — nil.
It represents: mapcar(f,nil) — nil
Rule 2: app(app(mapcar,f),app(app(cons,x),tl)) —
app(app(cons,app(f,x)),app(app(mapcar,f),tl)).
It represents: mapcar(f,cons(x,tl)) — cons(f(x), mapcar(f,tl))
Both the aforementioned functions are higher order in the sense that they take functions
as input. It is easy to prove the termination of both the above rewrite systems. Further since

there are no critical-pairs between the rules in each system, both the systems are confluent.
The rewrite systems representing the two functions are thus both convergent.

It is clear from the above examples that because we have only one function symbol app,
any function constant is treated as a first order constant. Thus the model allows for the
use of function wvariables, which give us the additional representation power required for
manipulating higher order functions.

3.2 Preservation of properties in the model

We see that both higher order and first order terms are representable in this structure as no
distinction is being made between first order constants(variables) and higher order constants
(variables). Any first order term f(¢....t,) can be represented as app(app(....app(f,
t1),t)..., t,) in the model. The converse is also true for any first order function f. Thus it is
very easy to prove the following two theorems relating the model to first order terms. Let the
translation of a first order rewrite system R into the model be represented as TRANS(R).

Theorem 3.1 R is confluent iff TRANS(R) is confluent.

e = This follows trivially from the previous lemma by induction on the number of rewrite
steps.

<« To Prove this let us consider a non-confluent R. Here we can derive two normal-forms
s and ¢ from the same starting term u in R. Starting from TRANS(u), we can get normal-
forms TRANS(s) and TRANS(t) in TRANS(R), by induction on the number of rewrite steps.
Hence TRANS(R) is non-confluent too. Thus < is also proved.

Theorem 3.2 R is terminating iff TRANS(R) is terminating.

e <& is trivial. Because if there is nonterminating derivation in R, a corresponding
derivation in TRANS(R) can be found.

= If TRANS(R) is nonterminating, then there is an infinite derivation here. By induction
on the number of rewrite steps and using TRANS! | we get a nonterminating derivation in

R.

3.3 Capturing higher order functional programming

The system provides a mechanism to do higher order rewriting in the functional sense. This
is illustrated with the following example. The Mapcar function defined in the previous section
is being used here.

Consider the starting expression: mapcar((+ s(0)),cons(0,cons(s(0),nil))). The rewriting
proceeds by application of Rule 2 of Mapcar giving cons((+ s(0) 0),mapcar((+ s(0)),cons(s(0),
nil))) followed by Rule2 of Mapcar again to finally yield cons(s(0),cons(s(s(0)),nil)) as the
normal-form.

Thus we have been able to incorporate higher order functional features in a first order
system by using currying.

3.4 Solving for functions

In the first order domain, one is limited to solving for the first order equational goals(e.g.
on solving plus(x,0) =7= s(0), we would get x=s(0)). But in the model presented here, even
for the first order subset, we are able to solve for higher order equational goals, e.g. if we
are having plus and product in the pure first order subset we can still answer queries like
app(x,0) =?= s(0) ,to get the answer x = (plus 1),as the answer. In addition the method
in the model easily extends to the higher order case which involves solving for higher order
goals in higher order rewrite systems.

The existing procedures of narrowing [Siva 89] and top-down-decomposition methods
[Mitra 90] [Martelli 86] for equation solving can be extended to this model. We shall illustrate
how narrowing can be used to solve for higher order functions in this model. The mechanism
of narrowing|[Siva 89] is given by the following transformation rules:

Reflect: 0 = mgu(s,t) : {s ="t} UG = Go

Narrow :p = mgu(l, s |p) :
{s="t} = {slu +rlpu="tu} UGp
Let R = {app(app(+,0),) — ; app(app(+, app(s,), y) — app(s, app(app(+, z),y))} -
Here, if we ask the query app(f,0) =?= 0 by narrowing the left-hand-side converts to 0 by
application of first rule with the unification {f — app(+,0)}. Thus by narrowing we get
{f — app(+,0)}, as the answer for the query.

The top-down decomposition method[Martelli 86] of solving equations is given by the
following transformation rules:

Transformation Rules for Top Down Decomposition
Decompose : {f(s1,...,8,) =2f(t1,.. ., 1)} UD = {s1 =%1,...,5, =7, } UG

Restructure : f(l;,...,l,) > r€R:
{f(81,.--82) =Nt} UG = {51 =21,...,8, =2, r =7} UG

Bind : 0 = mgu(X,t) : {X =%}UG = Go

Expand: occurs(X,t)&t |,= f(t1,...,tn)&f(ly,...,ln) 27 €R:

The top-down decomposition method can be applied in this model to solve for both first
order terms and higher order terms. Consider the higher order query app(f, 0) =7= 0 ,
the top-down decomposition method yields the following steps for R = {app(app(+,0), x) —

x; app(app(+, app(s, x)), y) — app(s, app(app(+, x),y))} :
app(f, 0) == 0 = Restr {f =7 = app(+,0),2 =7 =0,0=? =z}
—Bina {0 =7=0},0 = {f — app(s,0)}
— Decom ¢, 0 = {f > app(+,0)}
hence yielding {f — app(+,0)} ad the result.

Thus we see that existing equation solving procedures of first order equations can be used
to solve for higher order functions in this model. We have implemented a minor variation
of the top-down decomposition method for this model, which is more efficient than narrow-
ing. We can prove the correctness and completeness of the method borrowing results from
[Mitra 90]. We find that strong typing of the terms (where any term in the language has a
fixed type) increases the efficiency of the search because pruning of the unwarranted paths
becomes easier. The method with strong typing of terms is sound. In the end, we relaxed
the typing restrictions , by using type-inferencing on the terms of the equation and examined
the search process. This was also found to be efficient.

4 Conclusions

In this paper we present a way to incorporate higher order functions in an equational program
setting. The central concept involves extending the first order equational programs with the
notion of currying - a mechanism to represent n-ary functions with a single unary function
app, where functions are treated as first order terms. This phenomenon of abstraction of
functions enables us to capture higher order rewriting in the sense of functional programming
and higher order logic programming in the sense of equation solving.

The soundness and completeness of the method with embedded type-inferencing is cur-
rently under investigation.

References

[Barendregt 84] Barendregt H.P., ”The Lambda-Calculus - Its syntax and semantics”, 2nd
ed., 1984, North Holland.

[Tannen et al 89] Breazu-Tannen V. and Gallier J., ”Polymorphic rewriting conserves alge-
braic strong normalization and confluence”, In Proc. ICALP 89, pp. 137-150. , LNCS
372.

[O’Donnell 85] O’Donnell M.J., "Equational Logic as a Programming Language”, 1985,
MIT Press.

[Dougherty 91] Dougherty D.J.,;” Adding algebraic rewriting to the untyped A-calculus, in
R.V.Book, ed., 4th RTA 91, LNCS 488, pp. 37-48.

7

[Gougen 86] Gougen J.A. and Meseguer J., EQLOG: Equality, types and generic
modules for logic programming”, In Logic Programming: Functions,relations and

equations,Prentice-Hall, Engelwood-cliffs,NJ, pp. 295,1986.

[Knuth 70] Knuth,D.E., and Bendix,P.B. ”Simple word problems in universal algebras,”, In:
Computational Problems in Abstract Algebra, J.Leech, ed. Pergamon Press, Oxford,
U.K., 1970, pp. 263-297.

[Martelli 86] Martelli,A., Moiso,C. and Rossi,G.F. ”An algorithm for unification in Equa-
tional theories”, Proceedings of the Third IEEE Symposium on Logic Programming,
Salt Lake City, UT(September 86), pp. 180-186.

[Mitra 90] Mitra Subrata,” Top-down equation solving and extension to AC-theories”, M.S.
thesis, Univ Of Delaware, Dec 1990.

[Siva 89] Sivakumar G., ”"Proofs and computation in Conditional Equational theories”,
Ph.D. dissertation,UITUC, May 1989.

[Srinivas 94] Padmanabhuni S.,”Higher Order functions in Equational Programs”, Proceed-
ings of the Second ARD Workshop , Birbie Island, Queensland, Australia (September
1994).

