Curried Least General Generalization: a
framework for higher order concept learning

Srinivas Padmanabhuni and Randy Goebel
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
E-mail: {srinivas, goebel }@cs.ualberta.ca
WWW: http://www.cs.ualberta.ca/ {srinivas, goebel}
Voice: +1-403-492-2683
Fax: +1-403-492-1071

Koichi Furukawa
Graduate School of Media and Governance
Keio University
5322 Endo, Fujisawa, Kanagawa 252, Japan
E-mail: furukawa@sfc.keio.ac.jp
WWW: http://www.sfc keio.ac.jp/ furukawa
Voice: +81-466-47-5111 Ext. 3235 or 3231
Fax: +81-466-47-5350

Abstract. Continued progress with research in inductive logic program-
ming relies on further extensions of their underlying logics. The standard
tactics for extending expressivity include a generalization to higher order
logics, which immediately forces attention to the computational complex-
ity of higher order reasoning.

A major thread of inductive logic programming research has focussed
on the identification of preferred hypothesis sets, initiated by Plotkin’s
work on least general generalizations (LGGs). Within higher order frame-
works, a relevant extension of LGG is Furukawa’s hyper least general
generalization (HLGG) [FIG97].

We present a relevant higher order extension of Furukawa’s HLGG based
on currying, which we call Curried Least General Generalization (CLGG).
The idea is that the formal difficulties with the reasoning complexity of
a higher order language can be controlled by forming new hypothetical
terms restricted to those obtainable by Currying. This technique sub-
sumes the inductive generalization power of HLGG, provides a basis for
a significant extension of first order ILP, and is theoretically justified
within a well understood formal foundation.

1 Motivation and Introduction

First-order logic has been the major focus of research in the field of machine
learning, as developed within inductive logic programming (ILP) [Mug92, Rae93].

The typical ILP framework uses first-order Horn clauses as the underlying rep-
resentation language for inductive generalization. The computational difficulty
of dealing with general first-order clauses is well acknowledged, which justifies
the ILP concentration on the Horn clause restriction, and the development of
several induction algorithms [Pop70, Plo70, Plo71a, Plo71b] for clausal repre-
sentation. This restriction, which makes the clausal language computationally
attractive, also makes induction algorithms efficient enough to be practical for
real application.

The standard ILP implementation strategy is based on procedural engines
for carrying out the inverse of deduction on first order clausal syntax. An impor-
tant part of the historical development of logic programming are the relatively
efficient algorithms for restricted deduction using resolution, which provide the
basis for languages like Prolog, and which have been widely used in a variety
of artificial intelligence applications over the past two decades. Unlike deduc-
tion, induction has multiple possible outcomes, so ILP introduces additional
complexity, due to the multiple outcomes possible with the inversion of deduc-
tion algorithms. The consequence is the desire to distinguish the “best” of the
outcomes, thus the motivation for adopting Plotkin’s ideas and their derivatives.

Despite the common first order clausal restriction, there are many situations
where the expressivity of higher order logics provides for direct representation of
knowledge that is otherwise difficult to express, so the development of reasoning
systems that manipulate fragments of higher order languages continues. Some
(relatively) efficient deduction algorithms for higher-order logic [NM90] have
been successfully developed. This has led to the implementation of higher-order
languages like A-prolog [NM90] and HOL [GM93], which are based on deduction
mechanisms in certain restricted forms of higher-order logic. These languages
have been successfully used for formal reasoning in many different areas, in-
cluding hardware design and verification, reasoning about security, proofs about
real-time systems, semantics of hardware description languages, compiler verifi-
cation, program correctness, modeling concurrency, and program refinement.

Further, there are certain aspects of inductive and deductive reasoning with
first order logic, which provide the motivation for considering higher order ex-
tensions to the first order logic based algorithms for ILP.

For efficiency considerations in first order deduction systems, suitable re-
strictions are required that enable the design of computationally feasible rea-
soning algorithms. These restrictions are typically cast as higher-order meta-
information—and used in even relatively pedestrian language extensions. Con-
sider the case of the language PROLOG, based on deduction of first-order
clauses. In Prolog, there are a variety of meta-predicates which are quite of-
ten used to guide the “pure deduction” component of the computation. Some of
these predicates are not, ! (cut), ;(or), setof, and bagof. So higher-order predi-
cates are a part of the meta-information necessary for implementing deduction
systems in first-order logic.

In the induction of first-order clauses in ILP, one use of higher-order meta-
information is as a bias to control the complexity of the induction process in

generalizing from ground examples to first-order formulae. Some of the examples
of such higher-order meta information include information about the mode of
arguments of clauses, as well as second-order schema to guide the predicate
invention phenomenon in the induction process. These are typical examples of
higher-order meta information used in a variety of ILP systems like CTA[RB92]
and RDT [KW92].

The above factors provide a strong motivation for research on identifying
subsets of higher-order logic which can be efficiently exploited for induction.
Keeping the computational costs in mind, one might reason that investigation
of higher-order logics is not a worthwhile project to undertake. But the above
argument vis-a-vis tractable subsets of higher-order logic is a promising research
strategy. Moreover development of induction algorithms for higher-order logics
is potentially fruitful in generating meta-information for both inductive and de-
ductive reasoning with first-order logic programs. Some recent studies by Mug-
gleton [FM92] [MJ94] suggests potentially important directions of research in
the inductive generalization of higher-order clauses. He suggests that the use of
higher-order logic in induction might help in improving both efficiency and ex-
pressivity in certain induction domains. Feng and Muggleton [FM92] develop an
algorithm for generalization in a restricted form of A-calculus and demonstrate
its use in a class of program transformations. But the main problem in [FM92] is
the use of a A-calculus-based abstraction formalism which complicates the devel-
opment of algorithms for generalization. Complexity issues for such algorithms
are not clearly presented in that system.

Here we present a higher-order extension to the LGG (least general gener-
alization) algorithm of Plotkin [Plo70], the ground-breaking work in machine
learning which forms the basis of a majority of ILP algorithms [Mug92, Rae93].
We exploit the technique of currying [Sch24, Cur30], commonly used in applica-
tive (functional) programming, for inductive logic programming and develop a
framework for Curried least general generalization (CLGG).

Currying provides a uniform basis for exportability of ideas from first-order
logic based induction to higher-order logic induction. Though currying doesn’t
provide the full power of A-calculus, we show how many important classes of
useful higher-order structures can be obtained by using first-order algorithms
on curried forms of first-order expressions. We then discuss the different issues
concerned with controlling the complexity of such induction process in a variety
of cases, and discuss feasible higher-order generalizations. An interesting out-
come is the extendibility of the various forms of bias restrictions used in ILP to
higher order induction, which is a key factor in development of a computationally
attractive higher-order learning system.

A system based on higher-order induction can be used to capture some po-
tentially useful kinds of higher-order meta information for ILP. In addition there
are diverse applications of such a system which can be studied such as classes of
program transformations.

We also extend the idea of relative least general generalization (RLGG)
[Plo70] to our subset of higher-order logic obtained by using currying on first-

order terms and clauses. We present generalizations of the various algorithms
in Plotkin’s RLGG framework to work for this restricted subset of higher-order
logic. We discuss the meaningful higher-order generalizations achievable by these
extended algorithms, which are otherwise not achievable in ILP. The issues in-
volved in implementing any such extended algorithm are examined, in particular
the exportability of efficiency ideas in ILP, like syntactic bias, to guide higher-
order induction. In addition, some important applications of such higher-order
induction system are examined. This includes a new interpretation of HLGG
[FIG97] by CLGG.

In summary, we discuss a plethora of possible directions in which this work
can be extended.

2 Currying as a foundation for CLGG

The most natural language for describing higher-order expressions mathemati-
cally is the A-calculus, whose language consists of structures called A-terms. A
A-term is either:

1. A variable | e.g.z, is a A-term;
2. An application MN , where both M and N are A-terms;
3. An abstraction Az. M, where M is a A-term.

In the form MN, we say that M is applied to N. Similarly we say that Az. M
abstracts z in M.

The variable occurrences in a A—term are of two types: free or bound. An
occurrence of a variable x in a term P is bound iff it is a part of P with the form
Ax. M ; otherwise it is free.

For any A-term M,N and any variable z, M [N/z] is defined to be the result of
substituting N for every free occurrence of z in M, and changing bound variables
to avoid clashes.

The essential mechanism of manipulating A-calculus terms is the syntactic
process called f-reduction. The F-reduction rule is defined as follows:

(Az.E) M «—3 E [M/z],
where the necessary restrictions for z not being free, apply.

So the language of A-calculus is very convenient for representing higher-order
terms. Implicit in the above representation of function applications is the under-
standing that we will use only function applications of the form MN, (M applied
to N), where M and N are both A-terms. But in many functional programming
languages, function applications are multi-argument in nature, i.e. a function is
applied to a multitude of arguments.

The phenomenon of Currying [Sch24, Cur30], is used to convert multiple
argument functions to a form representable in A-calculus. Currying refers to
the process of converting a multi-argument function application of the form M
N ... P (where M,N,... P are all A-terms) to another expression of the form
(((...(MN)...)P) which is representable in A-calculus.

In the framework of inductive logic programming, the underlying language
is the language of first-order terms. The domain of first order terms (T(F,X))
constructed from the set of functions F, and the set of variables X consists of
terms defined recursively as follows:

— A variable 1s a term
— If f is an n-ary function symbol, and ¢4, ...,¢, are terms, then
F(t1,ta, ... t,)is a term.

A first order term can be converted by currying to a A-term by use of a
single binary function called apply, to first-order terms pairwise. A first-order
variable z is converted to z, and a first-order term of the form f(¢1) is converted
to apply(f, conv(t1)), where conv(t1) denotes the converted form of ¢;. Extending
thisto f(t1,12,...,1,) , we get the form apply(apply(...apply(f, conv(ty)), conv(ts))
...,conv(ty,), where conv(t;) represents the converted form of ¢;.

The currying process thus enables us to represent any first-order term as a
A-term.

3 Curried least general generalization

3.1 Language

The advantage of applying currying to first-order terms as shown in the previous
section is that it has only one function, namely apply, and any multi-argument
or constant function reduces to a constant in the term. Therefore a binary func-
tion constant plus will be treated the same as a unary function constant like
successor, or a zero-ary function constant like 0. This removes any difference
between functions of different arity.

Extending the idea, we remove the difference between predicates of different
arities, and treat predicates as multi-argument functions returning only true or
false. This enables us to use predicates as constants in our language.

In our term structure , a term belonging to T(F, X, P), the set of curried
terms, is defined by the following inductive rules:

1. Any first order or higher-order variable z, (a multi-argument function or
predicate) is a term.
2. An application apply(¢1,12), where 1,12 € T(F, X, P) , is a term.

This is the same as the original definition of first-order term except that only
one binary function symbol (apply) is used, and the differences between higher-
order and first-order terms evaporates. Any term in this superset of first order
logic shall be equivalently referred to as a curried first order term or simply
curried term. A curried clause is a set of curried terms with appropriate signs.

The set of terms in this language forms a superset of the set of first order
terms, and includes additional higher-order terms not representable in first order
syntax. We do not concentrate on the full A-calculus for our language because
of complexity considerations and show that even this conservative higher order

extension of first order logic terms is capable of providing useful higher-order
expressions which are significantly more expressive than first order logic.

Now we present a model for inductive generalization for this language subset
of full A-calculus by extending ideas from Plotkin’s RLGG framework to this
superset of first order logic.

3.2 6-subsumption under the new representation

In ILP, the model of induction is based on the relation between pairs of clauses
termed as f-subsumption. We extend the notion of #-subsumption for curried
first order terms, defined as follows:

Definition 1 (Curried #-subsumption) A curried clause P is said to §-subsume
another curried clause Q, iff there exists a substitution 6 such that P8 C Q.

This definition induces a generality relation between any two curried clauses.

For example, the clause containing only the term apply(f, X') 6-subsumes the
clause {apply(f, 1), apply(g,2)}. This relation induces a lattice on the clauses in
our language, similar to the ILP case.

3.3 The LGG algorithm for clauses under the new representation

Here we show that when we apply the LGG algorithm for first order clauses
to the clauses in our representation scheme, we get a higher order concept. We
call the output of this algorithm a curried least general generalization (CLGG).
The LGG algorithm, when applied to the curried representation, will extract the
higher-order predicates from the set of input first order predicates.

The steps in our algorithm for obtaining the CLGG are as follows:

(1) Convert any function from the form f(¢,...1,)

to app(app(...app(f,t1),t2) ..., tn).
(2) Then apply the LGG algorithm which runs as follows:

1. The LGG of terms f(s1,82,...,5n) and f(t1,42,...,t,) is
F(LGG(s1,t1), ..., LGG(sp,t,)). The LGG of terms f(s1,...,s,) and
g(t1,...,t,), where f # g is the variable v where v represents this pair
of terms throughout.

2. The LGG of two terms p(s1, sz, .., $p) and p(t1,ta, ...,) is
p(LGG(s1,t1), ..., LGG(sn,tn)),

3. LGG is undefined when the sign or predicate symbols are unequal.

4. The LGG of two clauses C; and Cy is {l : [y € C; and [y € Cy and [4
has the same sign and predicate symbol as Iy and | = lgg(l1,12)}.

Consider, for example, the two clauses {apply(f,1)} and {apply(g,1).}. The
CLGG of these two clauses is {apply(X,1)}.

3.4 CRLGG: Curried relative least general generalization of clauses

The advantage of ILP systems over other learning systems is in their ease of us-
ing background knowledge in guiding the induction process. In Plotkin’s learning
framework, the LGG definition is generalised to include generalizations in the
presence of background knowledge. This generalization in the presence of back-
ground knowledge is called relative least general generalization (RLGG).

Let P be a set of clauses in our language, i.e., P is a set of curried first order
clauses. Let C and D be two curried first order clauses. The curried relative least
general generalization CRLGGp(C, D) of C and D relative to P, is the least
general clause within the f-subsumption lattice for which PACRLGGp(C, D) —
CAD.

Similar to the RLGG of ILP, the CRLGG of a pair of clauses in our system
can also be pretty large, thus requiring suitable restrictions for achieving feasible
higher-order generalizations.

4 Some meaningful higher-order generalizations
achievable by CLGG

By removing the distinction between the unary and n-ary functions, we are able
to represent higher order terms. Here we show that this representation in CLGG
is able to capture some elementary higher order properties which cannot be
captured in first order logic, without recourse to A-calculus.

Ezxample 1 Transitivity. Consider the first order predicates brighter-than and
lighter-than. We know that if lighter-than(X,U) and lighter-than(U,Z) are both
true, then lighter-than(X,Z) is also true for any X,U and Z. Similar property
holds true for brighter-than. If we were to capture this generic higher-order
property of transitivity of predicates, it is impossible to capture this notion in
one first order clause. But in our curried syntax, such a property can be captured
by a clause {apply(apply(P, X), Z) < apply(apply(P, X),

Y), apply(apply(P,Y), Z).}. We can obtain instantiations of the clause for the
predicate constants lighter-than and brighter-than respectively.

Ezxample 2 Sortedness. Consider a list of integers. For convenience we shall rep-
resent a list in the prolog syntax as opposed to the curried constructor based
notation for lists. Say we have a list [X|Y], we know that the predicate ascending-
order-sorted(L), where L is a list, can be represented by the set of clauses,
{ascending — order — sorted([X]), ascending — order — sorted([X|[Y|7]]) +
X <=Y,ascending—order—sorted([Y|Z])}. Similar set of clauses for descending-
order can be shown. But if we can capture the underlying relation in either case
which is the generic property of sortedness, we can represent it conveniently in
the curried syntax: {sorted([X]),

sorted([X|[Y|Z]]) + X <= Y, sorted([Y|Z])}. This notion of the higher order
property of sortedness cannot be captured in first order logic.

Ezample 3 Inverse & Identity . Consider the generic mathematical operation of
inverse. If we were to define the property of inverse and identity for each mathe-
matical operation we would have to define individual inverse and identity predi-
cates for each mathematical operation. Consider addition(Plus) where we as-
sume 0 to be the additive identity. The inverse predicate would be defined
by plus(inv-plus(x),x)=0. And analogously for multiplication we would have
mult(inv-mult(x),x)=1. We can generalize the two operations of inverse and iden-
tity for any algebraic operation, and represent these generic versions of inverse
and identity in the curried syntax. The generic higher-order predicates of inverse
and identity can be defined by the equality relation apply(apply(P, apply(apply(
inverse, P), z)),z) = apply(identity, P). Here we can substitute add or multi-
ply for P, and get the unary minus and reciprocal operations for the inverse
respectively and 0, 1 for identities, respectively.

Ezxample {4 Program transformations. Many examples representing similarities in
structure between different logic programs can also be be captured in our curried
syntax. This justifies the use of our generalization algorithms in program trans-
formations. For example, a clause like apply(P, apply(f, X)) < apply(f, apply(P, X))
represents a generic structure for programs of the type addtwo(s(z)) < s(addtwo(z))
, where addtwo represents addition by two and s represents the successor func-
tion. So program transformations is one high potential area where our general-
ization model has promising applications.

5 Issues in the use of CLGG algorithm to build a feasible
higher order learning system

The advantage of using CLGG 1is in the fact that the algorithm is a direct
application of the first order LGG algorithm. Hence this enables us to export
ideas used in reducing the complexity of the generalization process in first order
LGG-based systems like GOLEM [MF90], to our higher order CLGG system.
The extension of the features used to control the explosion of choices in
GOLEM needs to be studied with reference to the modified curried syntax. In
this context the first question that needs to be examined is the capability of
GOLEM to generalize in the new modified syntax. In the following subsection,
we show some examples, executed in GOLEM [MF90], which show the feasibility
of using restrictions analogous to GOLEM for curried terms. This provides a
basis for an implementable higher order generalization system based on LGG.

5.1 Experiments with GOLEM

In GOLEM, the underlying bias restrictions to the language of clauses are both
semantic and syntactic. Here we show the achievability of generalization of cer-
tain classes of curried higher order terms and also curried first order terms using
GOLEM. We present two sample runs from GOLEM for curried representation

each showing generalization capabilities of first order and higher order curried
terms respectively.
Example 1

% Background Knowledge
apply(milk,al).
apply(milk,a2).
apply(milk,a3).
apply(milk,a4).
apply(aquatic,a5b).
apply(aquatic,a6).
apply(aquatic,a7).
apply(aquatic,a8).
apply(apply(class,al),mammal).
apply(apply(class,a2),mammal) .
apply(apply(class,a3),mammal) .
apply(apply(class,a4),mammal) .
apply(apply(class,ab),fish).
apply(apply(class,a6),fish).
apply(apply(class,a7),fish).
apply(apply(class,a8),fish).

% Positive Examples

apply(apply(class,al),mammal) .
apply(apply(class,a2),mammal) .
apply(apply(class,a3),mammal) .
apply(apply(class,a4),mammal) .

apply(apply(class,ab),fish).
apply(apply(class,a6),fish).
apply(apply(class,a7),fish).
apply(apply(class,a8),fish).
% Negative Examples

apply(apply(class,ab),mammal) .
apply(apply(class,a6),mammal) .
apply(apply(class,a7),mammal) .
apply(apply(class,a8),mammal) .
apply(apply(class,al),fish).
apply(apply(class,a2),fish).
apply(apply(class,a3),fish).
apply(apply(class,a4),fish).
apply(milk,a5).

% GOLEM output

apply(apply(class,A) ,mammal) :- apply(milk,A).
apply(apply(class,A),fish) :- apply(aquatic,A).

This example shows how the terms in the first order component of curried
terms are still generalizable in GOLEM under the curried representation.
Example 2

% Background Knowledge
!'- randseed.

apply(apply(mem,0),[0]).
apply(apply(mem,1),[1]).
apply(apply(mem,2),[2]).
apply(apply(mem,3),[3]).
apply(apply(mem,4),[4]).
apply(apply(mem,0),[0,0]).
apply(apply(mem,1),[0,1]).
apply(apply(mem,0),[1,0]).
apply(apply(mem,0),[2,0]).
apply(apply(mem,1),[1,1]).
apply(apply(mem,1),[2,1]).
apply(apply(mem,2),[2,2]).
apply(apply(mem,2),[3,2]).
apply(apply(mem,3),[2,3]).
apply(apply(mem,3),[4,2,3]).
apply(nat,0).

apply(nat,1).

apply(nat,2).

apply(nat,3).

apply(nat,4).
apply(apply(memb,0), [0]).
apply(apply(memb,1),[1]).
apply(apply(memb,2),[2]).
apply(apply (memb,3),[3]).
apply(apply(memb,4), [4]).
apply(apply (memb,0), [0,0]).
apply(apply (memb, 1), [0,1]).
apply(apply(memb,0),[1,0]).
apply(apply (memb,0),[2,0]).
apply(apply(memb,1),[1,1]).
apply(apply (memb,1),[2,1]).

apply(apply(memb,2),[2,2]).
apply(apply(memb,2),[3,2]).
apply(apply (memb,3),[2,3]).
apply(apply (memb,3), [4,2,3]).

%Positive Examples

apply(apply(mem,0), [0]).
apply(apply(mem,1),[1]).
apply(apply(mem,2),[2]).
apply(apply(mem,3),[3]).
apply(apply(mem,4), [4]).
apply(apply(mem,0),[0,0]).
apply(apply(mem,1),[0,1]).
apply(apply(mem,0),[1,0]).
apply(apply(mem,0),[2,0]).
apply(apply(mem,1),[1,1]).
apply(apply(mem,1),[2,1]).
apply(apply(mem,2),[2,2]).
apply(apply(mem,2),[3,2]).
apply(apply(mem,3),[2,3]).
apply(apply(mem,3),[4,2,3]).
apply(apply(memb,0), [0]).
apply(apply(memb,1),[1]).
apply(apply(memb,2),[2]).
apply(apply (memb,3),[3]).
apply(apply(memb,4), [4]).
apply(apply(memb,0), [0,0]).
apply(apply (memb, 1), [0,1]).
apply(apply (memb,0),[1,0]).
apply(apply (memb,0),[2,0]).
apply(apply (memb,1),[1,1]).
apply(apply (memb,1),[2,1]).
apply(apply (memb,2),[2,2]).
apply(apply(memb,2),[3,2]).
apply(apply(memb,3),[2,3]).
apply(apply(memb,3), [4,2,3]).

% Negative examples

apply(apply(mem,0),[1,2]).
apply (apply(mem,3),[1).
apply(apply(mem,0),[1]).
apply (apply (memb,0),[1,2]).
apply (apply(memb,3),[1).

apply(apply(memb,0), [1]).
apply(nat,[]).

% GOLEM output

apply(apply(4,B),[BICI).
apply(apply(4,B),[C,DIE]) :- apply(apply(4,B),[DIE]).

This example illustrates the higher order capabilities of the LGG algorithm
under our curried syntax. Both predicates mem and memb have the same struc-
ture within the output program representable by the curried outcome returned
above. Therefore we can conclude that currying added to GOLEM has higher
order capabilities not captured in the original GOLEM.

Additional observations The two examples in the previous section, show the
applicability of semantic and syntactic bias restrictions used by GOLEM even in
the curried representation. But GOLEM has certain other kinds of meta infor-
mation too, e.g. modes of predicates, which is provided by the user to restrain
the size of the RLGG obtained, and to control the explosion of possible alterna-
tives. Such type of meta information needs to be incorporated in computation of
CRLGG in order to gain similar efficiency. Some first order examples in GOLEM
were not generalizable in a controlled manner in the curried form, due to the lack
of the appropriate meta-information for curried terms. But a suitable change in
the appropriate component of GOLEM (for dealing with mode information for
curried representation of the terms) should help us achieve the full power of
GOLEM for our curried representation.

5.2 Efficiency Issues

In the previous subsection it was shown that currying provides the capability of
generalizing certain kinds of higher order information in GOLEM. It was shown
that simple first order terms generalizable under GOLEM are also generalizable
under the curried syntax. This leads to the conclusion that the bias restrictions
on the clauses in GOLEM, which make the task of generalizing with RLGG
achievable, are also applicable to the curried first order terms. In this context the
observations made in the previous subsection stress the need for a change in the
part of the procedural engine of GOLEM which deals with the mode information
of arguments of predicates. A systematic study of the restricted subset of curried
first order terms needs to be done as to what the bias restrictions imposed in
GOLEM mean in the curried context. More precisely, the bias restrictions like
generative clauses, determinacy and functional dependencies need to be studied
in the curried context.

6 Applications of CLGG

As seen above, there are a variety of different higher order predicates that can
be characterized by curried first order terms. So CLGG can be exploited in a
variety of application domains where higher-order information is used. We briefly
describe two such classes of applications.

6.1 Program transformations

Some restrictions of the CLGG can be used to generate transformations equiv-
alent to certain program transformations. As shown above, CLGG can be used
to capture similar programs into one common structure. This enables us to rea-
son about equivalence of different programs based on templates of programs
written in curried form which are obtained by generalization. In the following,
we consider a special case of CLGG, which again resembles a class of program
transformation algorithms.

Hyper Least General Generalization: a special case of CLGG If we
restrict our curried generalization to generalization of two predicates at a time,
along with generalization of variables but not involving any function generaliza-
tion, we get a restricted form of generalization. We can call this new form of
generalization after Furukawa’s term hyper least general generalization (HLGGQG)

[FIG97]. HLGG is defined for two literals like

The generalization of two literals that have different predicate symbols causes
the invention of a new predicate. Let the two clauses to be generalized by HLGG
[FIG97] be C'1 and €2, and the two literals chosen from C'1 and C2 be p(T'1) and
q(T2), respectively. During the HLGG process on C'1 and C'2, assume that p(7'1)
and q(7'2) are generalized by HLGG and the result gen_p_q(T) is obtained. This
new predicate gen_p_q(T) is defined by

gen_pq(T) : — p(T1). (1)
genpq(T) : — q(T2).

where T, T'1 and T2 are terms and T = LGG(T1,72). The new predicate
gen_p_q(T) represents pV ¢, or a superconcept of p and q.

The generalized procedure induced via generalization in HLGG is equivalent
to an application of the program transformation folding operation [BD77] to
the original clauses, using the newly invented predicate. That is, the folding of
clauses C'1 and C'2 by definition (1) yields the same effect as applying HLGG to
C1 and C2.

This folding operation can also be considered as a kind of relative general-
ization. That is, performing LGG relative to the definitions of newly invented
predicates will produce the HLGG C' of C'1 and (2. This follows because

BK U {C}E C1AC2

where BK denotes background knowledge. This suggests an efficient implemen-
tation of clause-HLGG by first introducing new predicates using literal- HLGG
and then performing RLGG.

HLGG can be formulated as a special case of CLGG, involving a two step
process. In the first step, we compute the CLGG of the two terms which are
generalizable by HLGG. Let the two terms involved in the HLGG computation
be p(T'1) and ¢(72). The CLGG of the two terms is of the form app(X,T), where
T is the curried translation of LGG of T1 and T2, and X is a new variable not
found in either T1 or T2. We then replace the X in app(X,T) by a predicate
constant gen_p_q. On translation of this curried expression into normal form
and addition of the two clauses as in the HLGG definition above, we have the
required expression for HLGG.

The equivalence of the HLGG, shown above to be a restricted application
of CLGG, and the program transformation technique of folding, suggests that
CLGG can be used for more complex program transformations.

6.2 Bias Generator for ILP systems

As indicated in the introduction, higher order templates are commonly used in
specifying bias for induction of logic programs. In particular second order clauses
form the basis for bias to control the induction in the ILP systems CIA [RB92]
and RDT [KW92]. For example, if the bias is the clause {P(X) + Q(X), R(X)}
then the available vocabulary for the induction is the set of instances of the
above clause.

Given ground positive examples with suitable background examples together
with negative examples, the generalized algorithm based on currying can gen-
erate curried higher order clauses like the above clause used as bias in RDT
[KW92]. So CLGG provides a tool for automating the process of generating bi-
ases in ILP. The biases generated from curried generalization of ground examples
can be used to form the appropriate bias needed to guide the induction process
in ILP systems which use higher-order schema as the syntactic bias. This idea
provides a useful tool for experimenting with suitable biases based upon ground
example inputs.

7 Conclusions and Scope for future work

This paper introduces a novel concept in first order induction algorithms en-
dowing them with the capability of generalizing higher-order clauses which are
otherwise not representable in first order logic. The important difference from

an earlier work [FM92] is the non-reliance on A-calculus as the higher order rep-
resentation language. In [FM92], A-calculus is used as the underlying paradigm
and generalization algorithms involved are complex due to this representation.

In our presentation, we have exported the notion of currying from func-
tional programming to induction of first order logic expressions. This resulted
in a superset of first order logic in which some key higher-order functions can
be represented without taking recourse to A-calculus. The generalization algo-
rithms applied to first order logic in ILP have been used to generate higher-order
clauses without recourse to A-calculus. Extensions of first order generalization
algorithms in ILP to curried first order logic have been presented. The GOLEM
examples show the feasibility of inducing higher-order clauses within this frame-
work. Additionally, at least two important application areas of CLGG based
generalization, namely program transformations and bias generation for ILP,
have been outlined.

Further studies is underway on the following extensions of the framework
presented:

1. A theoretical characterization of semantic and syntactic restrictions used in
GOLEM, when applied to curried terms. This also includes the study of
different classes of restrictions of the curried first order logic and generation
of meaningful clauses corresponding to such restrictions.

2. Use of CLGG as a program transformation tool.

3. Use of the CLGG as a tool for automating the process of selection of biases
for certain first order induction algorithms like RDT.

4. Incorporation of mode based semantic information into the curried general-
ization algorithm in extended GOLEM.

Acknowledgements

This work has been supported by the Natural Sciences and Engineering Re-
search Council of Canada, and by the Canadian Federal Networks of Centres of
Excellence Institute for Robotics and Intelligent Systems.

References

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing
recursive programts. Journal of the ACM, 24(1):44-67, 1977.

[Cur30] Haskell B. Curry. Grundlagender kombinatorischen logik. Am. J. Math.,
52:509-536, 1930.

[F1G97] K. Furukawa, M. Imai, and R. Goebel. Hyper least general generalization
and its application to higher-order concept learning. Reserach Memo
IEI-RM 97001, SFC Research Institute, Keio University, 5322 Endo,
Fujisawa-shi, Kanagawa 252, Japan, 1997.

[FM92] C. Feng and S. Muggleton. Towards inductive generalisation in higher order
logic. In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth
International Workshop on Machine Learning, San Mateo, California, 1992.
Morgan Kaufman.

[GMO93]

[KW92]

[MF90]

[MJ94]

[Mug92]
[NM90]

[Plo70]

[Plo71a]

[Plo71b]

[Pop70]

[Rae93]

[RB92]

[Sch24]

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

J. Kietz and S. Wrobel. Controlling the Complexity of Learning in Logic
through Syntactic and Task-Oriented Models. Inductive Logic Programming.
Academic Press, 1992.

S. Muggleton and C. Feng. Efficient induction of logic programs. In
Proceedings of the First Conference on Algorithmic Learning Theory, Tokyo,
Japan, 1990.

Stephen Muggleton and C.David Page Jr. Beyond first-order learning :
Inductive learning with higher-order logic. Technical Report PRG-TR-13-94,
Oxford University, UK, 1994.

S. Muggleton, editor. Inductive logic programming. Academic Press, New
York, 1992.

G. Nadathur and D. Miller. Higher-order horn clauses. Journal of the ACM,
37(4):777-814, 1990.

G.D. Plotkin. A note on inductive generalization. In B. Meltzer and

D. Michie, editors, Machine Intelligence, volume 6, pages 153—-163.
Edinburgh University Press, Edinburgh, 1970.

G.D. Plotkin. Automatic methods of inductive inference. Ph.d. dissertation,
University of Edinburgh, Edinburgh, Scotland, 1971.

G.D. Plotkin. A further note on inductive generalization. In B. Meltzer and
D. Michie, editors, Machine Intelligence, volume 6, pages 101-124.
Edinburgh University Press, Edinburgh, 1971.

R.J. Popplestone. An experiment in automatic deduction. In B. Meltzer and
D. Michie, editors, Machine Intelligence, volume 5, pages ??77—777
Edinburgh University Press, Edinburgh, 1970.

Luc De Raedt. A brief introduction to inductive logic programming. In
Proceedings of the 1993 International Symposium on Logic Programming,
pages 45-51, Vancouver, Canada, October 26-29 1993.

L. De Raedt and M. Bruynooghe. Interactive theory revision: an inductive
logic programming approach. Machine Learning, 8(2), 1992.

M. Schonfinkel. Uber die baustine der matematischen logik. Math. Annalen,
92:305-316, 1924.

This article was processed using the TEX macro package with LLNCS style

