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Abstract

Overconstrained systems refer to sets of soft con-
straints which do mot permit a solution satisfying all
the constraints. The overconstrainedness in such soft
constraint systems can be manifested in a wide variety
of structures including weighted constraints, partially
ordered constraints, constraint hierarchies and refer-
ences. The simplest among these formalisms is the
mazimal constraint satisfaction problem, where a solu-
tion is sought which satisfies the mazimum number of
constraints. In this treatise, backtracking algorithms
and their intelligent versions used in ordinary con-
straint satisfaction(CSP) context, are studied in con-
text of maximal constraint satisfaction problem. The
algorithms by Freuder and Wallace in [1] for depth-
first branch and bound and backjumping, are extended
to conflict-directed backjumping. A theoretical anal-
ysis of the problem of application of intelligent back-
tracking algorithms for maximal CSP is provided.

1 Introduction

A constraint satisfaction problem (CSP)[4] refers
to the problem of finding values to a set of variables,
subject to constraints on the acceptable combination
of values. A solution to a CSP is a set of variable-
value assignments, which satisfies all members of the
set of constraints in the CSP. In some situations, it
is not possible to find a solution satisfy all the con-
straints belonging to a CSP. Such problems are termed
as overconstrained problems.

The absence of a solution satisfying all the con-
straints in the CSP, prompts the need to relax the
requirements of the CSP. An overconstrained prob-
lem typically involves standard ways of relaxing the
requirements of the constraints, to allow for a reason-
able solution. The common mode of relaxation in-
cludes embedding a priority information among the

set of constraints, so that more important constraints
are satisfied over the less preferred ones. This prior-
ity information can be embedded in the constraints in
the form of a partial order on the constraints, or in
the form of assignment of weights to the constraints
or in the form of constraint hierarchy.

Orthogonal to the embedding of priority informa-
tion in the constraints, another school of thought in
overconstrained systems assumes all constraints to be
of equal weight and search is made for a solution satis-
fying a maximal subset of the set of constraints. This
overconstrained CSP specification is termed as the
maximal constraint satisfaction problem (max-CSP).
In max-CSP, the set of constraints satisfied by any
solution of the problem cannot be expanded further
without an inconsistency.

Unless otherwise specified, in this treatise, the dis-
cussion shall be limited to binary CSP’s. By binary
CSP’s, it is meant the constraints in the CSP involve
only two variables.

2 Intelligent backtracking and its ap-
plicability to max-CSP

2.1 Background

In this section, the background material concern-
ing application of branch and bound methods and its
variants to the maximal CSP are considered [1]. The
material in this section is cited from [1]. In naive back-
tracking for constraint satisfaction problems(CSP’s),
a partial assignment of values to the variables is con-
sistently expanded till a dead-end is encountered. A
dead-end refers to a situation when any value assigned
to the latest variable does not lead to a solution. In
such a case, backtracking occurs and the next possi-
ble value for the immediately previous variable is tried
till a value assignment to all variables is reached which
satisfies all the constraints in the CSP.



2.1.1 Depth-first branch and bound
(DFBB)

Backtracking clearly indicates that we need to go
through an exponential number of nodes in the worst
case to solve the CSP. This prompts the possibility
of extension of backtracking based algorithms for the
problem of computing one solution to the max-CSP. It
is clear from the definition of the max-CSP, that naive
backtracking will ultimately end for a max-CSP, with-
out returning any solution because the CSP is known
to be insoluble. Thus backtracking cannot be used di-
rectly for the maximal constraint satisfaction problem
(MCSP)[1].

In [1], it was shown that the natural analogue of the
naive backtracking algorithm for maximal CSP was
the depth-first branch and bound algorithm. In depth-
first branch and bound(DFBB) for max-CSP, similar
to the process in backtracking, a partial solution is
expanded along the way. But unlike the backtracking
algorithm, a partial solution is expanded even on en-
countering of an inconsistent solution. A counter N is
kept for the current best solution during the solving
process, and a counter C keeps track of the number
of constraints violated by the current assignment of
values. We may begin with a large N, close to infinity.
Then on encountering the first assignment of values to
all variables, this figure N is updated by C, the number
of constraints updated by the current solution. Then
search backtracks and proceeds with a different value
for the preceding variable and C is recomputed. On
encountering a partial assignment of values during the
search process, which violates > N constraints, search
along that path is cut short and backtracking occurs
to the next value of the preceding variable. This is
because any further assignment along the same path
cannot lead to a better solution.

Consider the max-CSP shown in Figure 1. Here
we use two variables C and N and S which represent
the number of constraints violated by the current as-
signment of values, the number of constraints violated
by the current best solution and the current solution
respectively.

The algorithm begins with the value N = infinity.
Then we proceed along X1=1,X2=1 till X3=1 without
any problem. But X3=1 is inconsistent with X1=1.
In naive backtracking this would have resulted in a
backtrack to X3=2. But here we proceed further and
try X4=1. Here we have a possible solution which
violates 4 constraints. Hence N is now updated by 4
and S, the current best solution is {X1 = 1,X2 =
1,X3 = 1,X4 = 1}. Next we backtrack and reach
X4=2 and S now becomes {X1 =1,X2 =1,X3 =
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Figure 1: Depth First Branch and Bound for Problem 1 with constraints C1,C2,C3 and C4.

1,X4 = 2} as the number of inconsistencies in this
solution is 3, which is less than 4, the current value of
N, and N is updated to 3.

Further backtrack to X3=2,X4=1 gives an even bet-
ter solution S={X1 =1,X2=1,X3 = 2,X4 = 1},
which gives N=2. In the next branch, this result is
further improved with S={X1 = 1,X2 = 1,X3 =
2,X4 = 2} giving N=1. So this assignment violates
just one constraint namely constraint C3, the con-
straint between X4 and X1.

Further backtrack leads us to X1=1,X2=2 which
violates 1 constraints and thus any further expansion
of this assignment cant lead to any better solution
than the current best solution S. So we bound the
search here and backtrack to the next level X1=2,
and then proceed to X2=1. Here again the number
of constraints violated is greater than or equal to the
current N,namely 1. So we bound it here and face a
similar condition at X1=2,X2=2.

This concludes the search process and we get the
solution S={X1=1,X2=1,X3 =2, X4 = 2} which
violates just N = 1 constraints.

2.1.2 Backjumping

In the previous algorithm, the depth-first branch
and bound method[1] was discussed. It was formu-
lated as a variant of the naive backtracking algorithm
for the maximal CSP. In backjumping proposed by
Gashnig[2], the naive backtracking method for CSPs
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was modified with a provision for some bookkeeping
to achieve a significant reduction in the search space
than the naive backtracking algorithm.

When backtracking occurs from a dead-end at a
variable, the control passes to the chronologically pre-
vious variable. But it is possible that the variables
responsible for the dead-end at that node are actually
much higher up than the immediately previous vari-
able. Let Xj be the deepest variable responsible for
creation of the dead-end at a node Xk, and let Xi be
the variable immediately chronologically prior to Xk.
In naive backtracking the control passes on to Xi after
Xk. But since Xj is the deepest variable responsible
for the dead-end at Xk, any exploration of the nodes
between Xj and Xk, will not prevent the dead-end at
Xk. So if instead of jumping to Xi, if we jump directly
to Xj, skipping across all variables between Xj and Xi,
we still preserve the solution and save a lot of search
space too. Thus backjumping results in a significant
reduction in search space which overshadows the slight
overhead involved in the bookkeeping of the deepest
variable in conflict with the current node Xk.

But this technique cannot be directly translated to
the max-CSP case, as was possible in the naive back-
tracking to depth-first branch and bound case. Con-
sider the example in figure 2. This is the same as the
example in figure 1. Here we follow depth first branch
and bound in the same manner as explained in the
previous section till we reach the node representing
{X1=1,X2=1,X3 =1,X4 = 2}. At this node
we find that the node X1 itself is in conflict with both
values of X4. So we can backjump from X4 to X1 di-
rectly instead of X3 or X2. So we can backjump to
X1=2 directly. But in the process we avoid a signifi-
cant portion of the search space, which is a consider-
able savings in the normal case. But from the figure
it is also clear that the search space we are avoid-

ing, actually contains the maximal solution,namely,
{X1=1,X2=1,X3=12,X4 = 2}. So backjump-
ing algorithm for CSP, when directly applied to the
max-CSP, leads to incorrect results. The phenomenon
occurs because of the fact that X3=1, was an incon-
sistent node, and in the avoided path, X3=2 was not
an inconsistent node, and this lead to the possibility
of a better solution along that path. The solution pro-
posed in [1], is to keep track of the latest inconsistent
node encountered in the current path, and backjump
to the later of the two variables, the backjump point
or the deepest inconsistent variable encountered. This
ensures that the correctness of the algorithm is not
compromised even though the savings in search space
due to backjumping may be lost in some situations.
Consider the situation above. At X4=2, we have to
choose between the backjump point namely X1, and
the last inconsistent point ,namely X3. Since X3 is
deeper than X1, backjump occurs to X3 and we have
no savings in space though we preserve the correctness
of the algorithm.

3 Extension of the results to conflict-
directed backjumping

In the previous section, the studies by Freuder
and Wallace[l] in extending backtracking and back-
jumping algorithms to maximal constraint satisfac-
tion problem was explained. It was shown that an
extra variable to keep track of the deepest inconsis-
tent variable at any time, is needed to decide the next
backjump point, in case of backjumping. The back-
jump took place to the deeper of the two variables,
the deepest variable in conflict with the current node
or the deepest of the inconsistent nodes.

In contrast to backjumping, in conflict-directed
backjumping, the backjump point is not just depen-
dent upon the variable at the current level but also
upon the variables at levels below. At each level of z;
an array conflict-set, keeps track of all the past vari-
ables in conflict with the current level. Every time an
inconsistency is encountered between x; and some past
variable, the past variable is added to the conflict set
of z;. In the event of all values of x; being exhausted,
the algorithm backjumps to the deepest variable xj in
the conflict-set of z;. In the process of this backjump,
the variables in the conflict-set of z; (excluding z;) are
added to the conflict-set of xj, because none of these
valuations can lead to a successful solution. Thus the
bookkeeping in conflict-directed backjumping (CBJ)
is more involved than that in plain BJ case.

We show that similar to BJ, CBJ algorithm cannot
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FIGURE 3: Depth first branch and bound for example 2 with constraints C1, C2, C3 and C4 above.

be applied as it is to the depth-first branch and bound
algorithm. Consider the example in Figure 3. In figure
3, the depth-first branch and bound traversal for the
CSP is shown. The depth-first branch and bound algo-
rithm traverses the search space and returns with the
maximal solution {X1=1,X2=2,X3=1,X4=1}.

Now, consider the same example with conflict-
directed backjumping. In CBJ, at X4=1 in the first
pass at {X1 = 1,X2 = 1,X3 = 1,X4 = 1} the
conflict-set consists of the set {X1}. Next at {X1 =
1,X2 = 1,X3 = 1,X4 = 2}, the conflict-set now
becomes {X1,X3} for X4. So backtrack occurs to
the deepest variable in the conflict-set namely {X3}.
At the same time the conflict-set of X3 is reassigned
{X1}, since that is the only remaining element in the
conflict-set of X1 other than X3 itself. So the search
proceeds along {X1 = 1,X2 = 1,X3 = 2}. But at
this point we reach abound and now need to backtrack
or backjump to the deepest variable in the conflict-set
of X3, which is X1. Next search will proceed to X1=2
onwards. So in this process, we have jumped across a
major portion of search space. But this search space
contains the actual maximal solution found by DFBB.
So in applying CBJ to the branch and bound algo-
rithm, the correctness of the algorithm is lost.

The phenomenon occurring here is similar to that
occurring in the plain backjumping case as shown
in [1]. The anomaly occurs because of the presence
of inconsistent node X2, between the point to which
conflict-directed backjumping occurs and the current
level. The inconsistent node in the present branch
leaves the prospect of a better solution in an alterna-
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FIGURE 4: CBJfor example 2with consiraints C1, C2, C3and C4 above. The sheded area.
isthe area avoided by the CBJ and contains the critical solution.

tive branch at the inconsistent node (X2 here). Here
the maximal solution {X1=1,X2=2,X3=1,X4=
1} occurs in one such alternative branch.

The solution suggested by [1], can be extended to
the CBJ case, but with additional bookkeeping. The
idea is to backjump to the deepest of the two variables,
the backjump point or the deepest inconsistent node
prior to the current node. In BJ case, a variable was
kept to keep track of the deepest inconsistent node
encountered.

But in CBJ case, we need to keep track of the infor-
mation of the deepest inconsistent node prior to every
level, not just for the present level because in back-
jumping information requires only conflict information
corresponding to the present level while in CBJ, the
conflict information of the present level is passed on to
the upper level to which the backjumping occurs. So
the information pertaining to the inconsistent nodes
should be kept corresponding to each level. Let incon-
sistentli] correspond to the deepest inconsistent node
prior to the level i. This information is maintained
and passed on in the following manner. Initially all
are initialized to 0. Then as the partial solution is
expanded on in the CBJ algorithm, all entries still
remain zero, till an actual inconsistent node say Xj is
encountered. Then as this partial solution is expanded
to Xj+1, then inconsistent[Xj+1] is made to Xj. The
same value Xj is passed on to all entries till the next
such inconsistent node is encountered,say Xc. Even
inconsistent[Xc] is made to Xj. For any further ex-
pansion of this value Xc will be used. This goes on
till an actual backjump takes place. At a level k, let
Xi be the deepest of the two variables inconsistent[k],
and the deepest variable in conflict-set[k]. Now when
backjumping takes place to Xi, two changes are done.
Conflict-set][i] is updated to the union of conflict-set|i]



and conflict-set[k] minus the variable Xi. In addition
the values of inconsistent[j] is made to inconsistent]i]
for all j > i. Because now the value of Xi is changed
to a new variable and it may not be an inconsistent
node. This minor additional bookkeeping ensures that
the correctness of the CBJ is ensured when applied to
the depth first branch and bound case.

4 Theoretical Analysis of branch and
bound algorithms for the maximal
CSP

In this section we shall explore some theoretical
results associated with the branch and bound algo-
rithms for the maximal constraint satisfaction algo-
rithm. The results are analogous to ones discussed for
plain constraint satisfaction problems in [3]. Here we
observe that since in maximal CSP, we cannot usu-
ally satisfy all the constraints at one time, we need to
concentrate on the problem of satisfying a subset of
constraints at a time.

The main idea of this section is to present a charac-
terization of static conditions under which a particular
backtrack algorithm visits a node in the search. In do-
ing so, it is possible to sometimes obtain a rough idea
of the behavior of the backtrack algorithm. A char-
acterization in terms of dynamic conditions is not of
practical use since the checking of conditions in such
case itself will be a costly process. By dynamic char-
acterization, we mean a characterization in terms of a
variable which dynamically changes during the search
process.

The main difficulty in extrapolating the results
from [3], to maximal constraint satisfaction problem is
that the mere presence of an inconsistency at a node
does not stop the search at that point in branch and
bound algorithms.

Again, in the depth-first branch and bound method
as outlined in a previous section, N,the number of al-
lowed constraint violations varies as we proceed along
the way in the search process. Thus it is impossible to
obtain any static condition dependent on N for mea-
suring the effectiveness of any branch and bound algo-
rithm. So we need to fix our value of N, the necessary
bound on the number of constraints violated in the
maximal CSP, in order to get static quantified results
pertaining to the performance of the individual branch
and bound algorithms. So from now on in this section
we concentrate on the problem of maximal CSP, with a
predetermined N, for the conditions to explicable and
applicable. In other words, in the modified formula-
tion of the maximal CSP, we would like to find the

best possible solution to the CSP subject to the con-
dition that no more than N (predetermined or fixed)
constraints are violated.

Based on a measure of N, we can now elucidate
sufficient and necessary conditions for the different
variants of the branch and bound methods to work
for this version of the maximal constraint satisfaction
problem.

4.1 Depth first Branch and Bound

In plain depth first branch and bound (DFBB)
method, the search proceeds by assigning a value for
a variable and then expanding the variable sets till ei-
ther all variables are exhausted or we reach a point
where the limit of N constraint violations is reached.

Because of the presence of the predetermined bound
N on the number of inconsistencies, we can elucidate
sufficient condition for the DFBB algorithm to visit a
node.

Theorem 1 If DFBB wisits a node, its parent is a
node with less than N inconsistencies.

Proof 1 The proof is very straightforward. If the par-
ent of the node had greater than N inconsistencies,
then by virtue of the algorithm the current node will
never be reached and bounding will occur at the parent
node itself.

Unfortunately, it is not possible to give a static nec-
essary characterization of the algorithm. Because dur-
ing the course of the algorithm, if on the way, a solu-
tion is found with less than N inconsistencies, then N
can be updated in such a case and this process can be
dynamic. But if we know beforehand that any solu-
tion has a minimum of Nmin inconsistencies, then it
would be possible to give a necessary condition similar
as above:

Theorem 2 If a node is such that its parent is node
with < Nmin inconsistencies, then the node is visited
by DFBB.

Proof 2 The proof for the this theorem is straightfor-
ward.

The above results show that the condition anal-
ogous to the consistency of a node in backtracking
case[3], is the condition that the node have less than
N inconsistencies. This is explained by the fact that in
DFBB, a failure is triggered by a partial solution with
greater than N inconsistencies while in backtracking
the failure is triggered by an inconsistency.



4.2 Backjumping

Before we give a sufficient condition characterizing
the branch and bound algorithm with backjumping,
we state the following lemma.

Lemma 1 Any node visited by BJBB to a; after a;
such that (i > j), is such that (al,a2,.....,a;) along
with any of the value of x; will have >= N inconsis-
tencies.

Proof 3 The proof follows from the fact the fact that
backjump occurs from the node x; to x;. Irrespective of
the fact whether x; represents the deepest inconsistent
node before x; or the deepest variable in conflict with
z;, no variable between x; and x; is inconsistent or
has conflict with x;. So any of these variable instan-
tiations do not add any further inconsistencies caused
by a1,...,a; with a;. And we know that backtracking
occurs at a;, so it follows the a1, as, ...., a; with a; have
>= N inconsistencies.

Based on the above condition the sufficient condi-
tion for the BJBB algorithm can be written as follows:

Theorem 3 If BJBB visits a node, its parent node
has less than N inconsistencies when combined with
any other variable.

The theorem directly follows from the lemma
above.

Again, it is difficult to elucidate a necessary con-
dition for the BJBB algorithm, because of the same
problem as in case DFBB. We change the value of N
whenever a partial solution having lesser number of
inconsistencies is encountered. Once again if we are
ensured that we have a measure of the best solution
having Nmin inconsistencies, the necessary condition
for the BJBB algorithm then can be stated as follows:

Theorem 4 If a node is such that its parent has less
than Nmin inconsistencies when combined with any
other variable, then BJBB wvisits the node.

5 Contributions and future work

This document studies the problem of maximal con-
straint satisfaction in detail with stress on the intel-
ligent retrospective backtracking techniques. It ex-
tends the observations made in [1] to conflict-directed
backjumping. The other contribution of this trea-
tise is a detailed theoretical analysis of the intelligent
backtrack algorithms in the domain of overconstrained
problems, along the line pursued by [3] for CSPs.

This work shall be extended to include the incor-
poration of learning techniques in the backtrack tech-
niques for maximal CSP. The learning algorithms have
been studied as a major source of speedup for CSPs.
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