A framework for learning constraints : Extended Abstract

Stinivas Padmanabhuni,Jia-Huai You
Department of Computing Science,

Univ Of Alberta, Canada T6G 2H1.

e-mail: srinivas,you@cs.ualberta.ca

Aditya Ghose,
School of Computing and Information Technology
Griffith University
Nathan Queensland 4111 Australia
aditya@cit.gu.edu.au

June 20, 1996

1 Motivation and Introduction

Machine Learning [Shavlik and Dietterich 90] is the subfield of artificial intelligence that studies
the automated acquisition of knowledge as a result of experience. Learning is studied for a wide
variety of reasons: to discover general principles of intelligence , to get a better understanding of
human learning and to acquire domain-specific knowledge for performing a task better.

Machine learning research can be classified on various dimensions depending upon the context.
The primary dimensions of learning we need to consider are representation of knowledge, the
technique employed in learning and the domain of application.

We shall study the machine learning systems keeping in view one particular application domain,
i.e. constraints. Before we look at the role of learning in constraints, we shall explore the area of
constraints.

A constraint [Mackworth 92 | refers to relation that must be satisfied. For example, the relation
that all bodies falling under gravity must have the same acceleration is a constraint.

Since there exist a variety of real world problems, the variables being used in a problem can be
from diverse domains. Similarly the constraints being used in the problem can also be of diverse
types, e.g. integer variables with interval domains, real variables with continuous domain etc.
Again diverse types of constraints involving the above variables are used in practice like arithmetic
and order constraints, set constraints etc.

Constraint programming refers to process of solving the problems specified as sets of constraints.
The most common method of specifying constraints in constraint programming applications is as a
constraint satisfaction problem(CSP). A CSP [Mackworth 92 Jis defined by a set of variables, each
of which have a set of possible values (their domain), and a set of constraints (relations) between
these variables. The solution to a CSP is a set of variable-value assignments which satisfy the
constraints.

As described earlier the domains can be of diverse types as can be constraints. But the pre-

1



dominant type of specification of CSP involves variables with discrete and finite domains. The
CSP is then solved by use of certain techniques called consistency techniques in conjunction with
backtracking.

Another common way of specification of constraints is the form of a constraint logic program.
A constraint logic program is a generalization of a logic program, in the sense that the clauses can
contain constraints in the body. A constraint logic program is a set of clauses with predicates in
the head, but may contain constraints along with predicate symbols in the body of the clause. e.g.
The CLP P = {p(Y) - Y < 2,q(Y).;a(Z) - Z > 1} is a two clause CLP. The semantics of a
constraint logic program is similar to a logic program except that the process of unification as in
logic programs is replaced by the process of constraint satisfaction to solve the constraints involved
in the clauses.

There are situations in real life warranting the need for development of machine learning systems
for constraints. Typically in any problem solving domain, the constraints are fully specified before
a solution to the problem is attempted. But there are certain application domains where it might
be difficult to obtain an explicit set of appropriate constraints to define a problem. In such a case
a mechanism for automatically acquiring constraints becomes necessary.

Automatic constraint acquisition calls for development of learning mechanisms for constraints.
As the constraint representations vary in the type of domain, a variety of machine learning systems
can be developed for constraints.

Thus in this paper we develop a model for automatic constraint acquisition.

2 Constraints and learning

Empirical learning has been the principal source of systems capable of learning symbolic knowledge,
the common form of knowledge in constraints. In these systems, inductive reasoning is performed on
externally supplied examples to produce general rules. In any such system, the learner is fed a series
of characterizing examples classified into two sets of instances: positive and negative examples. The
objective is to produce a generalized description which is able to explain all the positive instances
and yet not explain any of the negative instances. Based on the methods involved in the obtaining
of the generalized description, the inductive learning systems[Wu 95] are broadly classified into the
following four categories:

Attribute based induction The purpose of such systems is to produce a generalized description
as decision trees or control rules from a set of positive and negative relational tuples as input so
that all the input positive examples are covered and is consistent with the negative examples.
The correctness of the learned description is tested by a sample test set from among the same
relational base.

Incremental Generalization and Specialization Here background knowledge is specified as
a hierarchy to choose between different descriptions. The descriptions are generalized and
specialized according to this hierarchy to decide the final form of the learned description.

Unsupervised Concept Formation The learner finds a generalized description from the input
examples by use of clustering similar data into a concept, and giving in the end a concept
a description satisfying certain description like Minimum description Length or some similar
measure. This technique is most popular in data mining systems.



Inductive Logic Programming [Muggleton 92] The most recent class of machine learning algo-
rithms based on use of first-order logic as underlying knowledge representation to generate
descriptions. Inductive Logic programming systems use a combination of all the above three
techniques in conjunction with background knowledge in the learning process. Inductive
Logic programming systems use a combination of all t he three systems above in the learning
process.

As seen from above the most recent work in the area of learning is in learning first-order clauses
or logic programs to give the stream of ”Inductive Logic Programming”. Logic programs are more
expressive than any propositional knowledge representation scheme. Hence the field of Inductive
Logic Programming has been applied in a variety of daily life applications. Also as seen from the
definition in the earlier section, we find that constraint logic programs are even more expressive
than logic programs because of incorporation of the concept of constraints in them. Thus it would
be worthwhile to explore if ideas from inductive logic programming can be exported or extended
to Constraint Logic Programs.

But in a constraint logic program, the process of deductive inference of logic programs is replaced
by a more generalized notion of constraint solving. Thus if any learning scheme were to be developed
for constraint logic programs, the first step in that direction would be to develop models for learning
simple constraints which can then be combined with the Inductive Logic programming techniques
to get the notion of Inductive Constraint Logic Programming.

This is a strong motivation for us to develop frameworks for automatic constraint acquisition
or constraint learning.

Before proceeding with the illustration of our model of learning constraints, we shall review
existing work related to constraint learning . Because the field of constraints is relatively nascent,
there are relatively fewer systems which apply machine learning to constraint based applications.

2.1 Earlier work in Constraint Learning

Mizoguchi and Ohwada[Mizoguchi and Ohwada 92] developed the notion of constraint-directed gen-
eralization in constraint logic programs to acquire spatial layout information. They propose a
mechanism to learn generalized spatial constraint given a set of input spatial constraints so that
each of the input spatial constraint is satisfied by the generalized spatial constraint. In physical
terms the generalized constraint represents a region which satisfies all input spatial constraints.

Zweben et al.[Zweben et al. 1992] describe an explanation-based learning variant to capture the
notion of analytic learning in the domain of constraint based schedules. The idea is to learn search
control knowledge for a constraint based scheduling system. The learned knowledge is used for
improving the performance in future occasions especially to depth-first backtracking through the
space of partial schedules.

Furukawa et al.[Kawamura and Furukawa 93] describe a generic learning model for constraints
based on exporting ideas from Inductive Logic Programming to Constraint Logic Programming.
They describe the model for linear algebra, and how more general constraints can be learned from
initial linear constraints.

Most of the work reported in automatic constraint acquisition has been in the area of constraints
on continuous domains. This motivates us to develop a generic model for automatic constraint
acquisition in discrete domains.



3 A framework for learning constraints

As discussed earlier, the best paradigm to implement constraint learning mechanisms is the empir-
ical learning method. Now there is a spectrum of empirical learning paradigms which have been
applied in machine learning systems. The fundamental process of learning in empirical learning
is ”Induction” or ”Generalization”. To date the vast majority of the inductive empirical learning
systems have been based on propositional knowledge representation. The only learning systems
based on non-propositional system are based on the Inductive Logic Programming Systems based
on clausal representation.

Before we proceed with a generalized framework for learning constraints, we need to identify
the type of constraints we shall be concentrating for development of learning schemes. Clearly
for constraint systems on variables with continuous domains, there cannot be a uniform rep-
resentation of all the constraints because of the infinite number of choices for each variable.
Thus such type of constraint domains call for learning schemes specific to the application being
considered[Kawamura and Furukawa 93][Mizoguchi and Ohwada 92].

On the other hand when we consider constraints on variables with discrete domains, we have a
uniform representation as relations for the underlying constraints. This may of course be infeasible
if the underlying domain is infinite. But a majority of the work in constraint programming is based
on finite domain constraints. Thus we shall be concentrating on the constraints with finite and
discrete domains. A major portion of the work in constraint programming is based on such type
of constraints. In fact the CSP problem formulation is based on finite domain discrete constraints.
Thus our motivation in this thesis to develop a framework for learning constraints on discrete and
finite domains.

As a starting point we shall develop an inductive generalization mechanism for constraints on
finite and discrete domains which are explicitly specified as relations (i.e. sets of allowable tuples).
We shall call such a representation of constraints as FCSP form, short for Explicit CSP form.
To begin with we should see whether existing learning frameworks of empirical learning can be
exported to take care of constraints in FCSP form. Theoretically any constraint on finite and
discrete domain can be converted to FCSP form by explicit enumeration of allowed combination of
values. Hence any learning scheme on FCSP form can be theoretically applied to any finite domain
discrete constraint application. In contrast to the highly application specific nature of constraint
learning mechanisms to be developed for constraints on continuous domains, this uniformity for
finite discrete domains prompted us to develop a comprehensively applicable learning system for
ECSP form of constraints.

But the existing inductive empirical learning methods are unsuitable for the ECSP form of
representation, for the following two reasons:

1. Learning methods based on clausal representation (Inductive Logic Programming) systems
[Muggleton 92], when applied to ECSP form, generalize too much, because they replace any
set of ground instances of a variable with a variable, e.g. Given the inputs R(1,2), and R(3,4),
the algorithm produces R(X,Y), which is too general.

2. Learning methods based on propositional knowledge representation forms cannot be used
because of two reasons:

(a) Intractability of the three stage process: Conversion of ECSP form to the particular
knowledge representation , application of the generalizing algorithm in that form and



the conversion back to ECSP form.

(b) Intractable size of the conversion of ECSP form into the native knowledge representation
in most of the cases.

This prompts us to look for an alternative form of knowledge representation which is closer
to the representation of constraints in order to reduce the complexity of the learning process.
We achieve this by using the same relational representation for both the input constraints and
the output learned form of constraint. In the next few sections we shall develop the model for
learning ECSP form of knowledge. In the end we shall discuss the extensions to the basic models
in detail, which will enable us to generalize the model to handle more generic form of finite discrete
constraints and will allow us to use existing empirical learning frameworks to that end. We discuss
a few applications of this model of learning ECSP form in detail.

4 A framework for learning ECSP form of knowledge

In the previous sections we were motivated as to the need for a generalized learning model for
constraints. Existing constraint learning frameworks concentrate on use of domain specific repre-
sentations, especially continuous domains, for design of learning schemes for constraints. In this
section first we shall develop a model for learning constraints on discrete domain. Our model shall
be developed for the simplest case where we have constraints on variables with finite and discrete
domains. Such constraints shall be called as the ECSP form (Explicit Constraint Satisfaction prob-
lem). We shall show how existing learning frameworks cannot be extended to the domain of discrete
constraints due to several context-dependent reasons.

First we shall develop the most basic model for empirically learning ECSP form of constraints
with just positive examples in the learning context. Then we discuss how we shall generalize and
enhance the model in different directions.

5 The model for learning ECSP constraints

In this section, we propose a learning (generalization) scheme for data represented in the ECSP
form. We have shown in the preceding section how existing learning algorithms are unsuitable for
the ECSP type of knowledge representation. The model for learning constraints in the ECSP form
is presented in the subsections below.

5.1 Subsumption Ordering in the KCSP form

In this section the mechanism of generalizing predicates in FCSP form will be presented.

In FCSP form,the predicates are represented by relations on finite domains. The generalization
operations in the representation are based on subsumption ordering between the predicates.

Definition 5.1 (Predicate Subsumption) A relation R subsumes another relation S iff S C
Ham(s)(R), where Hattr(S) denotes the projection operator onto attribute columns of S.

Consider the following example:



R =
A B
0 1
1 0
S =
A B C
1 0
0 O
1 0

Here, S subsumes R.

The abovementioned subsumption relation induces a partial order on the predicates. As with
any partial order , the subsumption ordering induces a lattice on the predicates. The lattice has
the universal relation R as the Top of the lattice and the empty relation ¢ as the Bottom of the
lattice.

Thus the above subsumption relation defines the notions of ”generality” and ”specificity” in
relation to knowledge represented in the ECSP form. Any constraint higher in the lattice(i.e.
more general) than a given constraint C captures all the knowledge contained in the constraint C.
Consider the example above, Here R states that A can take the values 0 and 1 only. S also conveys
the same information. But S conveys an additional knowledge to the effect that C can take the
value 0 only. If we consider the solution space of a CSP represented by the relation R, S is more
conservative than R because of the additional constraint on the variable C. But at the same time
all the knowledge exhibited by relation R with regard to variables A and B is also contained in
S. Hence we have a form of representation of knowledge which generalizes the relevant knowledge
in a given constraint and yet is able to reduce the solution space of the problem. The method
conveniently combines knowledge in two or more constraints and gives a closer approximation to
the solution because of the reduction of solution space. Hence this provides us a mechanism to
speedup the process of finding solution in a CSP problem.

6 Learning model in the positive only case

In the most basic case, we shall consider the case of learning in the presence of only positive
constraints. In such a model, it is natural to consider as a generalization a point in the subsumption
lattice described in the previous section, which is above every input constraint. We introduce the
notion of ”most specific” generalizations to the most useful among the multiple generalizations
possible in this case. In this section, we shall use the term ”constraint” to denote a positive
constraint.

We start by investigating the generalization of two constraints.
6.1 Most Specific Generalization and its properties

Given any two constraints(relations) we can then define the Most Specific Generalization of the
two constraints (relations)as follows:



Definition 6.1 (Most Specific Generalization) A relation R is called a Most Specific Gener-
alization of relations Ry and Ry iff R subsumes both Ry and Ry, and attrib(R)= attrib(R;) U
attrib(Rz), and for any relation R’ such that R subsumes R/, it is not the case that R subsumes

both Ry and R,.

Projection of R on R1 or R2 should be a minimal superset of R1 or R2 respectively.

Consider the following example:

R = S=
A B B C

0 O 1 1

o 1 1

The above two relations can have many MSG’s some of which are given below:

RS= MSG of R and S =

AB C A BC ABC A BC
00 0 00 001 0 00
01 0 11 011 0 11
11 0 10 010 1 10

RS = A B C
0
0 1
Y

Here any relation RS of the above form is a MSG of the given constraints R and S. But to have
a conservative generalization it is necessary for us to impose further restrictions on the definition of
MSG. We can achieve this by a ”Maximal Faithfulness” criterion which restricts the unconstrained
slots (like X and Y above), to a value which the particular variable is allowed to take by at least
one of the subsumed constraints(here R or S). In such a case there is no relaxation or tightening
of the constraint on a variable which is not common to both the relations. Thus we can state the
following lemma:

Lemma 6.1 For any MSG S of two relations Ry and Ry , S is mazimally faithful iff it is true that
VX such that X is not a variable common to Ry and R, []x(5) is equal to []x(R1) or [1x(Rs2)
whichever applicable.



We now look at the solution space of the MSG S as compared to the solution space of Ry or Rs.
If we impose the condition of ”Maximal Faithfulness” on S, it is possible for a solution tuple(vector)
to satisfy R; and yet not satisfy S, and similarly for Ry. This is not necessarily true with all MSG’s
But if the MSG is maximally faithful, this situation is avoided because of the restrictions on the
values the slots can take. Now we can show that any solution tuple satisfying a mazimally faithful
S, will satisfy at least one of Ry or Ry but not necessarily both because in such a case it would be
join of both the constraints. We state this result below. The proof is very straight forward.

Theorem 6.1 Let R1 and R2 be two constraints and S be a mazimally faithful MSG of R1 and
R2. Any solution vector satisfying S will satisfy at least one of R1 or R2.

In the normal circumstances it often is the case that the join of the two relations R and S forms
a subset of the MSG as described in the previous paragraphs. The join is trivially a subset of the
MSG of two relations except the following g case. The case is described below:

Let R and S represent the two relations. Let colrs=cols(R)N cols(S). Let RC=][].,;,s(R) and
SC=IT,01rs(S). The only case when the join is not a subset of the MSG is given by the following
rule: Let card(t,R) represent the cardinality of a tuple t in a relation R. The join of R and S, is
not a subset iff 3¢ such that ¢ € RC and t € SC, and both card(t,SC) and card(t,RC) are greater
than one. In such a case multiple MSG’s can be formed by adjoining the appropriate rows. In all
other cases, the join is a subset of the MSG. When R and S are not joinable the join, the empty
relation, is a subset of the MSG trivially.

We now summarize the properties of the subsumption ordering and MSG as studied above .

e The subsumption ordering induces a partial order on the constraints(relations).
e Any two constraints can have more than one MSG.
e The empty constraint is subsumed by any constraint.

e The Universal constraint (All the possible variables with all possible values) subsumes any
constraint.

e The projection of a mazimally faithful MSG of two constraints on an attribute that is not
common to both the constraints, is the same as the projection of the constraint containing
the attribute onto the attribute column.

e The solution space allowed by a maximally faithful MSG of any two constraints is tighter
than the solution space of at least one of the constraints.

e Any solution of a maximally faithful MSG of two constraint will satisfy at least one of the
constraints.

e The join of any two relations is a subset of the MSG except the case described in the previous
section.

6.2 Learning model based on MSG

The MSG algorithm shall be the basis of the learning model we shall be considering. In the most
basic model, the inputs are a set of positive constraints, each of which is a finite relation on a
set of variables with finite domains. In the section we describe the most basic learning model for



constraints. In this section we shall consider only positive constraints to be present in the model.
In this simplistic model we assume that we have series of positive constraints input to the learner,
without any background knowledge. In such a case the idea is to obtain a generalized representation
which encompasses all the knowledge contained in each of the constraints in the input model.

Thus we can obtain the generalization of n constraints by applying the MSG algorithm n times.

We show a schematic illustration of the algorithm in the following section. We shall study the
properties of such an algorithm in a later section.

6.3 Algorithm for the Positive Only model

Input: A set of constraints C = (1,5, Cs, ..., (.

Required : to output a constraint C' such that for every i such that C; belongs to C, '
subsumes C}.

Algorithm:
R = Cy; for (i:= 2 to n ) do begin t=MSG(R,C;); R=t; end;

7 Applications of the basic model

The FCSP form of knowledge representation is quite useful in a variety of application domains.
Some of the applications that we considered are:

e As a mechanism to learn relations and hence use it in any scenario where a learning model
for relations is desired.

e As a tool to improve search efficiency in CSP solving techniques.
e As a model for developing methods to improve scheduling techniques.
e To develop specialized methods for spatio-geometrical reasoning.

We shall explore one such application in slight detail below.

7.1 Improving search efficiency in constraint satisfaction problems

Any finite domain CSP, essentially involves a set of relations with a finite set of variables from
finite domains. The solution of a CSP corresponds to a relation satisfying all the constituent input
relations. Any CSP solving method essentially traverses the solution space, by continually changing
the valuations of the variables.

The FCSP form gives a handy tool to aid in the search process for solving a CSP. The idea
is analogous to the concept of explanation based generalization in Machine learning. Here the
knowledge obtained by traversing through a proof tree is encoded and put to use later. Similarly
the search control knowledge can be gathered in the process of searching the solution space of the
CSP by keeping search paths in the form of a generalized relation by the MSG algorithm. So when
searching for the next valuation in the process of solving, the knowledge encoded in the MSG can
be put to use as a heuristic. Conversely the knowledge of failed paths can be used to guide as
to which paths not to choose. Since the representation scheme of the FCSP form coincides with
the scheme used by CSP’s, the subsumption relation can be used directly to determine if a certain
valuation of a variable is desirable or not.



10

Thus this is a direct application of learning where the FCSP form of knowledge representation
scheme is used.

8 Extensions of the framework presented

In this section we shall briefly describe the different directions in which we are working in order
to extend the basic framework presented in this article. The extensions being considered in logical
order are presented in the following subsections.

8.1 Extension of the basic model to handle negative information

One of the immediate extensions being looked at by us is the incorporation of the notion of a
negative constraintinto the model. Before we proceed further we shall define the notion of ” Negative
Constraint”. A negative constraint is a constraint or a relation on a set of variables which must not
be explainable by any learned concept obtained by generalization of the input constraints. In the
presence of a negative constraint, also commonly known as a nogood, we need to define the notions
of consistency with respect to a nogood, analogous to a negative example in empirical learning.

This extended model with capability of handling negative examples is very useful in a large
number of situations. All the applications mentioned in the basic model case, can be dealt with more
efficiently and elegantly. Consider, for example, the CSP speedup application. In this application
negative constraints can help in reducing unwanted paths while positive constraints can act as
heuristics. This dramatically increases the efficiency of the CSP solving procedure. When we
extend the learning model presented in the previous section to handle negative constraints alongside
the positive constraints, we have a situation where we can have a spectrum of possible constraints
depending upon the idea of how general our model needs to be represented.

8.2 Extension of the model to handle clustering

In the basic model of learning constraints presented, we do not have a difference in representations
of data and information, i.e. learned information from the constraints. The representation scheme
chosen for representing the learned constraints is the same as the one of the constraints, i.e. the
relational form.

It is a good starting point as a model for incorporating learning into constraints. But from
a general case of constraint applications, such a type of learning model needs to be diversified
depending upon the application domain.

The simplest way of dissociating information learnt from the data input, is by using clustering
techniques to cluster similar data into groups and work with these groups in the learning process.
Hence this type of scheme will be generalization of the model presented in the previous section, in
the sense that the representation schemes for the information and the data differ. Also a whole set
of conceptual clustering techniques used in machine learning literature can be applied to constraints
represented in ECSP form.

Ellman [Ellman, 1993] describes a system to incorporate clustering techniques into Constraint
Satisfaction. He describes a method of clustering approximately equivalent objects into classes,
and then using these classes to develop hierarchical constraint solvers.

We can improve upon our basic model by incorporating conceptual clustering techniques in
the constraint generalization algorithm. We need to define a measure by which constraints are



11

compared and found similar or dissimilar. Based on such a measure of classification, we can develop
a application specific clustering technique over the constraints and develop learning algorithms using
these approximated clusters. Thus this is one of the directions in which the basic model presented
in our learning model is being extended.

8.3 Background Knowledge incorporation

The existing framework proposed in the earlier section, has no notion on background knowledge
which is a fundamental part of present day learning systems based on Inductive Logic Programming.

Thus one direction in which the work presented in the earlier section needs to be extended is
to incorporate inference in the presence of background knowledge.

In Inductive Logic programming, the notion of #-subsumption which is defined as an absolute
generality relation is extended in the presence of background first-order knowledge, to give the
notion of ”Relative Subsumption”. Analogously, we should extend our notion of the constraint
subsumption to handle background constraints. In such a case we must have a choice of a repre-
sentation of background knowledge which gives a reasonable motion of relative subsumption which
is not too costly to compute.

In this context research needs to be done as to what form of background knowledge of constraints
is the best suitable for a generalized constraint learning paradigm with background knowledge. A
relational type representation for the constraints in the background knowledge will be intractable
, while on the other hand a first-order clausal form will be a disadvantage in terms of granularity
of the data considered. A decision tree or a control rule type of background knowledge might be
preferable in terms of computational limitations.

Thus incorporation of background knowledge into the learning system developed in the previous
sections, is one of the important extensions which needs to be studied.

8.4 A framework for Inductive Constraint Logic Programming

An immediate extension of the basic model presented in this proposal seeks to incorporate the
constraint generalization methods into clausal generalization methods based on Inductive Logic
Programming to develop a solid foundation for Inductive Constraint Logic Programming. As a
first step we shall consider generalizing the framework to handle discrete domain constraint logic
programs like CLP(FD) , CC(FD) etc. Freuder and Wallace [Freuder and Wallace 95] extend the
notion of the basic "nogoods” to use high-level abstraction for generalizing the nogoods to higher
level concepts, in the solving a CSP.

In such a framework we need to develop a neat way to integrate the constraint learning mech-
anisms with #-subsumption of ILP, to give notion of generality between two constraint clauses,i.e.
clauses with constraints in the body of the clause. Such a framework will be helpful in developing
tools for automatic constraint acquisition in domains where CLP’s have been used extensively, e.g.
intelligent scheduling.

8.5 Development of Inductive Hierarchical Constraint Logic Programming Frame-
work

The other direction in which the model of previous section should be extended is to investigate if
constraint learning techniques can be extended to handle constraint hierarchies. Ideally, we would



12

like to have a learning system which will generate the constraint hierarchies once we provide the
input constraints as an input.

This type of system would be very useful in automating applications involving hierarchical
constraint solving. More precisely this notion of automatically generating hierarchies can be com-
bined with the hierarchical constraint logic programming techniques to give the notion of inductive
hierarchical constraint logic programming.

As astarting point we can generalize our work on constraint generalization to generate constraint
hierarchies by importing ideas from data mining. In particular work on Mining Knowledge at
multiple knowledge levels by Han et al. [Han 95], is a good starting point for such a system.

8.6 Correctness Results

The most important work in the file of learning has been in the computational learning theory. In
particular the theory of PAC learning is a neat way to characterize theoretically a learning system
which clearly identifies what is the "new” knowledge learnt in a learning system. In our learning
system, we can identify the correctness results for data represented as relations based on the PAC
learning system.

9 Conclusions and Scope for Future Work

In this paper, we have outlined a model of learning where the underlying knowledge representation
scheme is close to the one used in a majority of constraint programming applications. We have
shown how existing learning algorithms based on propositional representations or those based on
inductive logic programming paradigm are inadequate for learning in the model. We then discuss
the subsumption hierarchy in the model and present the learning algorithm for generalizing in our
model. We have studied the properties of the results obtained by learning in this model.

Thus we have outlined a generalized learning model for constraints on finite discrete domains.
We are working on extending this model in the directions mentioned in the previous section.

References

[Ellman, 1993] Ellman T., Abstraction via approximate symmetry. In Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence, Chamberry, France, August
1993.

[Freuder and Wallace 95] Freuder E.C. and Wallace R.J., ”Generalizing inconsistency learning for
constraint satisfaction”, Proceedings of [JCAI-95 the Fourteenth International Joint Confer-
ence on Artificial Intelligence, C. Mellish, ed., Morgan Kaufmann.

[Han 95] Han J.,” Mining Knowledge at Multiple Concept Levels”, Proc. 4th Int’l Conf. on Infor-
mation and Knowledge Management (CIKM’95), Baltimore, Maryland, Nov. 1995, pp. 19-24.

[Kawamura and Furukawa 93] Kawamura T. and Furukawa K., " Towards Inductive Generalization
in Constraint Logic Programs”, Proceedings of the [JCAI-93 Workshop on Inductive Logic Pro-



13

gramming, Chambery ,France(August 93), pp. 93-104.

[Mackworth 92 ] Mackworth A., Constraint Satisfaction, in S.C.Shapiro,ed.,The Encyclopedia of
Al,pp 285-293,Wiley, New York,1992.

1zoguchi an wada 1zoguchi IF. an wada H., "Constraint-directed generalization for

Mizoguchi and Ohwada 92] Mizoguchi F. and Ohwada H.,”C int-di dg lization f
learning spatial relations”, Proceedings of the International Workshop on Inductive Logic Pro-
gramming, [COT TM-1182, Tokyo ,1992.

[Muggleton 92] Muggleton S., Inductive Logic Programming. Academic Press, 1992.

[Page and Frisch 91] Page C.D., and Frisch A.M., ”"Generalizing atoms in constraint logic 7, Pro-
ceedings of the Second International Conference on Knowledge Representation and Reasoning,
pp 429-440, 1991.

[Scheix et al 93] Scheix T. et al., ”Nogood recording for static and dynamic CSP’s”, Proc. of In-
ternational Conference on Tools for Al, 1993.

[Shavlik and Dietterich 90] Shavlik J.W., and Dietterich T.G. (eds.), Readings in machine learn-
ing. Morgan Kaufmann Publishers , 1990.

[Wu 95] Wu Xindong, Knowledge Acquisition from Databases. Ablex Publishing Corporation,
1995.

[Zweben et al. 1992] Zweben M., Davis E. , Daun B.,Drascher E.,Deale M. and Eskey M., Learning
to improve constraint-based scheduling, Artificial Intelligence 58(1992) 271-296.



